A Multi-Task-Based Deep Multi-Scale Information Fusion Method for Intelligent Diagnosis of Bearing Faults

نویسندگان

چکیده

The use of deep learning for fault diagnosis is already a common approach. However, integrating discriminative information types and scales into models rich multitask feature still deserves attention. In this study, multitask-based multiscale fusion network model (MEAT) proposed to address the limitations poor adaptability traditional convolutional neural complex jobs. performed multidimensional extraction through convolution at different obtain levels information, used hierarchical attention mechanism weight features achieve an accuracy 99.95% total task six classification, considered two subtasks in classification discriminate size type multi-task mapping decomposition. Of these, highest reached 100%. addition, Precision, ReCall, Sacore F1 all index 1, which achieved accurate bearing faults.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Research of Intelligent Fault Diagnosis Model on Multi-Information Fusion

From the intelligent fault diagnosis system requirements, this article analyzes the relationship between the fault diagnosis and the multi-information fusion basing on the summing up the multi-sensor information fusion technology, and studies the hierarchical structure of multisensor information fusion system and the content of integration, and establishes an intelligent fault diagnosis model w...

متن کامل

A Comprehensive Method for Detection of Induction Motors Bearing Faults

In this paper, some deficiencies of previously conducted studies are pointed out. These are including unreliability, dependent to motor and bearing specifications, lack of precision, drawbacks of experimental tests and etc. Here some important works will be reviewed. The proposed method which is based on wavelet decomposition and tracing the trend of statistical features variations, has over...

متن کامل

Information Fusion With Subject-Based Information Gathering Method for Intelligent Multi-Agent Models

This paper addresses the problem of information fusion using a multi-agent information gathering system. We present a hierarchical subject-based query expansion method, followed by a cooperative fusion algorithm for unstructured documents. We evaluate the performance using the traditional methods of precision and recall. The results show that the subject-based fusion method is promising and eff...

متن کامل

Basis Pursuit based intelligent diagnosis of bearing faults

Purpose – To present a new application of Pursuit based analysis for diagnosing rolling element bearing faults. Methodology Intelligent diagnosis of rolling element bearing faults in rotating machinery involves the procedure of feature extraction using modern signal processing techniques and artificial intelligence technique-based fault detection and identification. This paper presents a compar...

متن کامل

solution of security constrained unit commitment problem by a new multi-objective optimization method

چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Machines

سال: 2023

ISSN: ['2075-1702']

DOI: https://doi.org/10.3390/machines11020198